Tip Pressure on Semicircular Specimens in Tapping Mode Atomic Force Microscopy in Viscous Fluid Environments
نویسندگان
چکیده
Tapping mode (TM) atomic force microscopy (AFM) in a liquid environment is widely used to measure the contours of biological specimens. The TM triggers the AFM probe approximately at the resonant frequencies and controls the tip such that it periodically touches the specimen along the scanning path. The AFM probe and its tip produce a hydrodynamic pressure on the probe itself and press the specimen. The tip to specimen size ratio is known to affect the measurement accuracy of AFM, however, few studies have focused on the hydrodynamic pressure caused by the effects of specimen size. Such pressure affects the contour distortion of the biological specimen. In this study, a semi-analytical method is employed for a semicircular specimen to analyze the vorticity and pressure distributions for specimens of various sizes and at various tip locations. Changes in pressure distribution, fluid spin motion, and specimen deformation are identified as the tip approaches the specimen. The results indicate the following: the specimen surface experiences the highest pressure when the specimen diameter equals the tip width; the vorticity between tip and specimen is complex when the tip is close to the specimen center line; and the specimen inflates when the tip is aligned with the specimen center line.
منابع مشابه
Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments
Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at re...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملSensitivity Analysis of Frequency Response of Atomic Force Microscopy in Liquid Environment on Cantilever's Geometrical Parameters
In this paper, the non-linear dynamic response of rectangular atomic force microscopy in tapping mode is considered. The effect of cantilever’s geometrical parameters (e.g., cantilever length, width, thickness, tip length and the angle between the cantilever and the sample's surface in liquid environment has been studied by taking into account the interaction forces. Results indicate that the r...
متن کاملHarnessing bifurcations in tapping-mode atomic force microscopy to calibrate time-varying tip-sample force measurements.
Torsional harmonic cantilevers allow measurement of time-varying tip-sample forces in tapping-mode atomic force microscopy. Accuracy of these force measurements is important for quantitative nanomechanical measurements. Here we demonstrate a method to convert the torsional deflection signals into a calibrated force wave form with the use of nonlinear dynamical response of the tapping cantilever...
متن کاملCantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy
We present a micromachined cantilever with an integrated high-bandwidth resonator for direct measurement of tip-sample interaction forces in tapping-mode atomic force microscopy. Force measurements are achieved by a diffraction grating that serves as a differential displacement sensor for the tip motion relative to the cantilever body. Time-resolved tip-sample interaction force measurement is d...
متن کامل